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Abstract

This note is a concise introduction to some basic aspects of elliptic curve cryptography. It
is based on lecture notes of a summer course at undergraduate level. Our approach is compu-
tational and uses the computer package PARI/GP as a tool to describe explicitly the underlying
arithmetical objects used in the cryptographic algorithms.

1 Introduction
It has become clear the need of adequate technologies that may mirror the traditional paper-based
transactions in the realm of digital communications in public networks. It is well-known that tril-
lions of dollars in funds and securities are transferred daily electronically. Standards for public key
infrastructures such as e.g. the American National Standard X9.62-1998 for the elliptic curve digital
signature algorithm (and other standards) have been created for that purpose. More precisely, the
public key infrastructures allow us to create digital signatures and establish secret keys secretly, to be
used in symmetric-key cryptosystems and guarantee

• data integrity,

• authentication of sender, and

• non-repudiation of the message by the sender.

The underlying mathematics of the first standards of public key infrastructures is modular arithmetic.
The key ideas were developed in the 1970’s by Whitfield Diffie, Martin Hellman and Taher ElGamal,
among others. But by the mid 1980’s a new approach to public-key cryptography emerged. This
was discovered independently by Neal Koblitz and Victor S. Miller and is based on the arithmetic of
elliptic curves over finite fields.
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The purpose of this note is to provide a concise introduction to some basic elements of public
key infrastructures based on the arithmetic of elliptic curves. These public key infrastructures provide
commercial grade security with a much smaller key size than the ones based on modular arithmetic. It
is hoped that this note will encourage the reader with an eye on actual implementations to learn more
about this topic by looking at the above mentioned standard, as well as the standard IEEE P1363.

In this note we first introduce some basic definitions and results from the theory of finite fields.
Then we describe the Diffie-Hellman key exchange protocol based on the multiplicative group of a
general finite field, and also discuss the digital signature algorithm based on the integers modulo a
prime p. We introduce elliptic curves by writing down the general form of a Weiestraß equation and
the explicit expressions of its group law. Then we focus on some basic facts of the theory of elliptic
curves over a finite field. This is followed by a discussion of the Diffie-Hellman key exchange protocol
and the digital signature algorithm and the elliptic curve versions of them. The main part of this note
concludes with some remarks on security and also domain parameter generation. Also included at
the end of this note is an appendix containing some basic results from the arithmetic theory of elliptic
curves, as well as a brief description on how to get PARI/GP [4].

Our approach in this note is computational and uses the free open-source computer algebra system
PARI/GP as a tool to describe explicitly the underlying arithmetical objects used in the cryptographic
algorithms. PARI/GP consists of two components. The first component is a highly optimized C
library whose primary focus is number theory known as PARI. The second component is an easy-
to-use interactive command line interface that gives access to PARI known as GP. The latter may be
used as a tool to quickly acquire a good working knowledge of the basics of cryptographic protocols,
including those based on elliptic curves. It is hoped that the discussions of the GP sessions will
encourage the reader to write his / her own GP routines.

It is worth noting that the reader may use the GP2C package for translating the GP routines into
the C programming language; the GP2C-compiled routines will typically run three to four times faster.
Moreover, the use of PARI as a C library can be very powerful for dealing with large objects—large
enough to be of cryptographic use. Indeed, Bill Allombert (CNRS / Université Bordeaux 1) has been
developing parallel PARI. The experimental GIT branch BILL-PAREVAL adds support for the multi-
threading technologies POSIX Threads (Pthreads), which runs on a single machine and the Message
Passing Interface (MPI), which runs on as many machines as you want. For further details the reader
may consult the slides of Allombert’s talk

http://pari.math.u-bordeaux1.fr/Events/PARI2012/talks/pareval.pdf

The above slides include a discussion of parallel SEA. The SEA algorithm is one of the most efficient
algorithms for counting points of elliptic curves defined over the field of p elements, where p is a
prime number. So the above may be used for efficiently producing commercial-grade elliptic curve
domain parameters. The enhancements may also be used to make massively parallel computation of
elliptic curve discrete logarithms to test the strength of the domain parameters.

For an open-source implementation of public key infrastructures the reader is encouraged to con-
sider OpenSSL:

http://www.openssl.org/

This system implements cryptographic protocols for SSL (Secure Socket Layer) and TLS (Transport
Layer Security) and it is one of the few open-source projects involved with validation under the
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Federal Information Processing Standard (FIPS) 140-2 of the U.S. government. The reader having in
mind real-life applications is strongly encouraged to install it and use it. We must warn the reader
that, mostly due to patent issues, the elliptic curve handshake capabilities of OpenSSL are disabled
by default. However, the reader is encouraged to learn about these patent issues and then decide if he
/ she wishes to enable some of them before compiling the package.

2 Preliminaries

2.1 Finite fields from an explicit point of view
Let E be a finite field. It is well-known that |E| = pd, where d is a positive integer. In order to make
explicit calculations in a given finite field E it suffices to determine an irreducible, monic polynomial
p(X) ∈ F [X] of degree d. More precisely, consider the canonical ring homomorphism

F [X] −→ F [X]/I

f(X) 7−→ f(X)

(1)

where f(X) := f(X) + I and I = p(X)F [X] is the ideal generated by p(X) (as a F [X]-module).
The irreducibility of p(X) implies that the ideal I is maximal. Indeed, recall that all ideals of F [X] are
generated by one element. So if J is an ideal of F [X] such that I ( J ( F [X], then J = p1(X)F [X]
and p(X) = p1(X)p2(X) non-trivially, where p2(X) ∈ F [X]. Hence I is maximal and the quotient
ring F [X]/I is a field, which we denote E. We will show that |E| = pd, where d = ∂p(X) is the
degree of p(X). Let α be the image of X in F [X]/I under the canonical map. We claim that the set

B = {1, α, α2, . . . , αd−1} (2)

is a basis of E, where we regard E as an F -vector space. To see this first we pick an element f(X)
of the quotient ring F [X]/I and use the fact that there are polynomials q(X), r(X) ∈ F [X] such that

f(X) = p(X)q(X) + r(X), (3)

where either r(X) = 0 or ∂r(X) < ∂p(X). Hence

f(X) = p(X)q(X) + r(X) = p(X)q(X) + r(X) = r(X). (4)

Thus r(X) is a linear combination of elements of B with coefficients in F . It remains to prove that
B is linearly independent over F . To see this note that a non-trivial linear relation among elements
of B over F yields a polynomial of p1(X) ∈ F [X] of degree 1 < d1 < d, and thus an ideal J =
p1(X)F [X] such that I ( J ( F [X], which certainly contradicts the maximality of I . Therefore B is
linearly independent and our claim follows. So B is a basis for E over F and thus E has pd elements.

The above furnishes an explicit approach to the arithmetic of E. More precisely, we may identify
each point x ∈ E with the unique polynomial f(X) ∈ F [X] of degree ∂f(X) < d such that
x = f(X), and f(X) may in turn be identified in a natural way with a (unique) point of F d. Using
this we may transfer to F d the sum and product operations of E, as follows. First, for each xi ∈ E
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we write xi = f(X), where fi(X) ∈ F [X] such that ∂fi(X) < d and i = 1, 2. Then we attach to
x1 + x2 ∈ E the point f1(X) + f2(X) ∈ F d, and attach to x1x2 ∈ E the point r(f1(X)f2(X)) ∈ F d,
where r(f(X)) denotes r in Equation 3.

We shall find useful to explicitly compute g(X) ∈ F [X] such that y = g(X) ∈ F [X]/I is the
inverse of a given non-zero element x = f(X) ∈ F [X]/I . This may be accomplished via Euclid’s
algorithm. The assumption f(X) 6= 0 is equivalent to (f(X), p(X)) = 1. So there exist (effectively
computable) g(X), h(X) ∈ F [X] such that

f(X)g(X) + p(X)h(X) = 1. (5)

Taking the class modulo I of left-hand side of this equation yields

f(X)g(X) + p(X)h(X) = f(X)g(X) = f(X) g(X).

Now taking the class modulo I of the right-hand side of Equation 5 together with the above implies
that y = g(X) is such that xy = 1. It is not difficult to see that such g(X) may be chosen so that
∂g(X) < ∂p(X). Thus taking the inverse of x ∈ E× may be expressed in terms of the points of F d

via the identification of E with F d we have used before.
A well-known result from algebra says that any finite subgroup U of the multiplicative group K×

of an arbitrary field K is cyclic. In particular, if E is a finite field then there is a generator g of E×.
Given x ∈ E×, the discrete logarithm a of x with respect to g is the element a ∈ {0, 1, 2, p− 2} such
that x = ga. This generalizes in a natural way to any finite cyclic group C of order n with a given
generator g. (Of course, if we want to have a uniquely defined by x = ga, then we must insist that
a ∈ {0, 1, 2, n− 1}.) There are several algorithms to compute discrete logarithms, such as the baby-
step giant step algorithm, the index calculus algorithm, and others. The efficiency of these algorithms
will depend on the nature of the cyclic group. It turns out that for cyclic groups C of prime order
coming from suitable elliptic curves over a large enough field E, the problem of computing discrete
logarithms is in general considerably much harder than the corresponding problem for K×, where K
is a random field such that |K| has the same order-of-magnitude of |E|. As we shall see, this kind of
considerations will guide us in our security assessments of some protocols that are used in public key
infrastructures.

We shall illustrate some of the above with an explicit example coming from a finite field E. Let
p = 2, i.e. F is the field that consists of two elements, and suppose we are interested in determining
an extension E of F of degree d = 9, i.e. |E| = 29. Now we need to find an irreducible polynomial
p(X) over F . In order to compute efficiently the arithmetic ofE we want p(X) to have as little weight
as possible. (Here the weight of a polynomial is the number of its nonzero coefficients.) There are
tables of irreducible polynomials over finite fields. See for instance Hansen and Mullen [2, p. 6]. But
in order to make our description more self-contained, we shall describe a simple method to compute
such polynomials. Let us consider the cyclotomic polynomial φk(X) ∈ Z[X] of order k. That is,
φk(X) is the minimum polynomial over Q of a generator ζ of the group µk of k-th roots of unity in a
fixed algebraic closure Qal of Q. For k = l prime it is just

φl(X) = 1 +X +X2 + · · ·+X l−1,

Now let φk(X) ∈ F [X] denote the polynomial obtained by applying the canonical map Z −→ F to
each of the coefficients of φk(X). The new polynomial φk(X) is known as the reduction of φk(X)
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modulo 2. Now we shall single out some non-trivial factorizations of φl(X) (where l is assumed
prime) with the help of the following PARI/GP script.

forprime(l=3,80,
f=polcyclo(l)*Mod(1,2);
L=lift(factor(f));
if(length(L˜)>3,print(l," ",L))
);

The output of the above script (in a slightly edited form so that the lines are not too long) is:

31 [xˆ5 + xˆ2 + 1, 1;
xˆ5 + xˆ3 + 1, 1;
xˆ5 + xˆ3 + xˆ2 + x + 1, 1;
xˆ5 + xˆ4 + xˆ2 + x + 1, 1;
xˆ5 + xˆ4 + xˆ3 + x + 1, 1;
xˆ5 + xˆ4 + xˆ3 + xˆ2 + 1, 1]

73 [xˆ9 + x + 1, 1;
xˆ9 + xˆ4 + xˆ2 + x + 1, 1;
xˆ9 + xˆ6 + xˆ3 + x + 1, 1;
xˆ9 + xˆ6 + xˆ5 + xˆ2 + 1, 1;
xˆ9 + xˆ7 + xˆ4 + xˆ3 + 1, 1;
xˆ9 + xˆ8 + 1, 1;
xˆ9 + xˆ8 + xˆ6 + xˆ3 + 1, 1;
xˆ9 + xˆ8 + xˆ7 + xˆ5 + 1, 1]

The above script may be interpreted as follows. In the PARI/GP script language is is known that

• forprime(l=a,b,P(l))means compute P (l) for each prime l contained in the set {a, a+
1, . . . , b};

• polcyclo(l) means compute the cyclotomic polynomial φl(X),

• Mod(a,p) represents the class of a modulo p, where a, p may be either both integers (or both
polynomials in one variable);

• multiplying by Mod(1,p) represents taking its reduction modulo p;

• lift(P) means taking the obvious section of the reduction map, where P denotes a class
modulo m (and here m is either an integer or a polynomial);

• factor(f) means compute the primary factorization of f and shows it as a matrix whose
(i, 1)-entry is the i-th irreducible divisor of f and (i, 2)-entry is the corresponding multiplicity.

So the above script outputs the factorization of the reduction of φl(X) modulo 2 whenever it has
more than 3 irreducible factors, for each l ranging in the set of primes contained in {3, 4, 5, . . . , 80}.
Among these irreducible polynomials let us pick one of degree 9 and lowest weight, e.g. p(X) =
X9 +X + 1 ∈ F [X]. This is represented in PARI/GP by the expression
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p = Mod(1,2)*(xˆ9 + x + 1)

Now we may explicitly do arithmetic in the field E of |E| = 29 = 512 elements. Let us obtain a
generator g of the multiplicative group E×. So we consider a random element g of E×, say g :=
X2 +X + 1. (Recall that we defined the field as F [X]/I , where I = p(X)F [X].) Let us find out if
g generates the cyclic group E×. The element g in PARI/GP may be represented as

g = Mod(xˆ2 + x + 1, p);

Clearly it suffices to check that gk 6= 1 for all non-trivial divisors k of |E×| = pd − 1. Note that
29 − 1 = 511, which has prime decomposition 511 = 7 · 73, so the non-trivial divisors k of |E×| are
just k = 7 and k = 73. For k = 7 we compute gk, which turns out to be

Mod(Mod(1, 2)*xˆ8 + Mod(1, 2)*xˆ7 + Mod(1, 2),
Mod(1, 2)*xˆ9 + Mod(1, 2)*x + Mod(1, 2))

and similarly for k = 73 we compute gk, which turns out to be

Mod(Mod(1, 2)*xˆ8 + Mod(1, 2)*xˆ7 + Mod(1, 2)*xˆ6 + Mod(1, 2)*xˆ4 +
Mod(1, 2)*x + Mod(1, 2),
Mod(1, 2)*xˆ9 + Mod(1, 2)*x + Mod(1, 2))

As none of these expressions represent the identity element of the group E×, it follows that the
element g = 1 +X +X2 is indeed a generator of E×.

Remark 1 Finite fields E over the field F of two elements are known in computer science as binary
fields, as their elements may be represented as binary expressions (i.e. sequences using 0 and 1 only)
of length d. The arithmetic of E may be implemented in hardware quite efficiently. These fields are
of fundamental importance in many areas of pure and applied mathematics. If the size of the field is
small, we produce a table of discrete logarithms a and the powers x = ga. The table may be used
to compute the product x1x2 of given elements x1, x2 ∈ E simply by looking up xi in the table to
obtain its discrete logarithm ai, for i = 1, 2, and then finding the entry corresponding to the discrete
logarithm a1 + a2.

2.2 Basic aspects of elliptic curves
Here we review some basic facts on the arithmetic of elliptic curves. For further details see the
Appendix, below, and Washington’s book [7]. Let K denote either a finite field or the field of rational
numbers and let A be an elliptic curve defined over K. A well-known result from the theory of
algebraic curves says that A has a Weierstrass model

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

for suitable a1, a2,a3,a4, and a6 in K. If the characteristic of K is neither 2 nor 3 then after a change
of coordinates if necessary, it is possible to find for A a Weierstrass model of the form

Y 2 = X3 − 27c4X − 54c6,

for suitable c4, and c6 in K. (See the Appendix for the precise relation between the coefficients of the
former equation and the coefficients of the latter.)
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Remark 2 Elliptic curves over fields of characteristic 2 are of fundamental importance in certain
cryptographic technologies that use the fact that the bytes are binary strings. Such elliptic curves
generally do not admit a Weierstrass model of the form Y 2 = X3 − 27c4X − 54c6.

Another well-known result from the theory of algebraic curves says that for each field extension
K ′ of K the set A(K ′) has a natural group structure. This may be given in terms of rational functions
of the coordinates with coefficients in K. We shall recall these expressions below. As is customary,
we express the group law using additive notation. The identity element is (0 : 1 : 0) and we denote it
O. Let P ∈ W (K ′) such that P 6= O. Then we may write P = (xP , yP ) and

−P = (xP ,−yP − a1xP − a3) ∈ W (K ′).

If Q = (xQ, yQ) ∈ W (K ′) is such that P +Q 6= O then P +Q = R, where R = (xR, yR) ∈ W (K ′)
with coordinates

xR = λ2 + a1λ− a2 − xP − xQ,
yR = −(λ+ a1)xR − ν − a3,

where

λ =

{
yQ−yP
xQ−xP

, if P 6= Q,
3x2P+2a2xP+a4−a1yP

2yP+a1xP+a3
, if P = Q,

and

ν =

{
yP xQ−yQxP
xQ−xP

, if P 6= Q,
−x3P+a4xP+2a6−a3yP

2yP+a1xP+a3
, if P = Q.

This corresponds to the famous chord-and-tangent construction, which is depicted in Figure 1. (See
Silverman [5, pp. 58–59] for further details.) Note that these expressions turn the curve A into an
algebraic group over K, as the expressions for group law are all defined over K. We denote [n]P the
n-fold addition of P ∈ A(K), for each n ∈ N and extend the definition of [n]P to all n ∈ Z in the
obvious way.

Now let us consider the following example of an elliptic curve defined over Q. Suppose A is the
elliptic curve labeled 37a1 in Cremona’s Tables [1]. This is the elliptic curve in the first isogeny class
among the isomorphism classes of elliptic curves defined over Q and conductor1 37. We may bring A
in and perform explicit computations on it with the help of PARI/GP [4]. First we define A as 37a1
via the initiate elliptic curve object command

A = ellinit("37a1");

The Weierstrass equation is [0, 0, 1,−1, 0], i.e. in affine form

Y 2 + Y = X3 −X.

By inspection we may see that P = (0, 0) lies on A(Q) and some elementary properties of tor-
sion points show us that P is non-torsion. In fact, it turns out that this point actually generates the

1The interested reader may find a definition of conductor of an elliptic curve in Silverman’s book [6]. Here it suffices
to say that the conductor measures the “arithmetic complexity” of an elliptic curve defined over Q and has precisely the
same prime divisors as the minimal discriminant ∆A of A
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P

Q

R

−R

Figure 1: Chord-and-tangent construction

whole Mordell-Weil group A(Q). Define the naı̈ve height h(P ) of a point P ∈ A(Q) as h(P ) =
max{|x|, |y|, |z|}, where P = (x : y : z) ∈ P2 and x, y, z are integers in lowest possible terms
(x, y, z) = 1, We may obtain a table for the naı̈ve height [k]P with k ranging from, say k ∈
{1, . . . , 39, 40} by invoking the command

naiveheight(x)=max(abs(numerator(x)), denominator(x));
for(k=1,40,print(k," ",height(ellpow(A,[0,0],k)[1])));

The corresponding output is

1 1
2 1
3 1
4 2
5 4
6 6
7 9
8 25
9 49
10 161
11 529
12 1357
13 3741
14 18526
15 98596
16 480106
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17 2337841
18 13608721
19 67387681
20 683916417
21 6941055969
22 51678803961
23 384768368209
24 5677664356225
25 61935294530404
26 997454379905326
27 16063784753682169
28 213822353304561757
29 3148929681285740316
30 79799551268268089761
31 2237394491744632911601
32 53139223644814624290821
33 1262082793174195430038441
34 41998153797159031581158401
35 1063198259901027900600665796
36 54202648602164057575419038802
37 2763291877248901877407461697249
38 102993803538933982914320107718801
39 3838799532815709794201672388387649
40 292736325329248127651484680640160000

The reader may perhaps note above that the last figures lie approximately on a parabola. In fact, if the
reader extends the range of k in the above computation, the parabolic shape is more evident. This is
not an accident. Actually, this is a special case of a general property of non-torsion points P ∈ A(K),
where K = Q (or more generally any finite extension of Q). It is well-known that the limit

ĥ(P ) := lim
k→∞

log h([k]P )

k2

exists and does not depend on the choice of Weierstrass equation for A, and it is known as the canon-
ical height of P ∈ A(Q). (It is easy to see that graph of the map k 7→ ĥ([k]P ) actually is a parabola
as k ranges through Z.) This is the basis of some heuristic considerations on the difficulty to solve via
index calculus the discrete logarithm problem for suitable cyclic subgroups of Ā(F ), where Ā is the
reduction of A modulo a prime p and F denotes a field of p elements.

Let us study the structure of Ā(F ) for the elliptic curve A we have discussed above, i.e. 37a1 in
the notation of Cremona’s Tables. Let us pick a prime different from ∆A = 37, say p = 13, so that
the reduction Ā of A modulo p is non-singular. Thus Ā is an elliptic curve. (See Appendix for some
details.) The reduced curve Ā may be defined in GP via the commands

p = 13;
a = ellinit([0, 0, 1, -1, 0]*Mod(1,p));
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Now we can list the elements of its points P defined over F (different from QA) by invoking just
counting the points of A with affine coordinates, as in the following script.

for(j=1,p,for(k=1,p,
P=[j,k]*Mod(1,p);
if(ellisoncurve(a,P),print(centerlift(P)))
));

Here ellisoncurve(a,P) is 1 when P ∈ A(F ) and 0, otherwise. The output of the script is

[1, -1]
[1, 0]
[2, 2]
[2, -3]
[5, 6]
[6, 1]
[6, -2]
[-3, 1]
[-3, -2]
[-2, 4]
[-2, -5]
[-1, -1]
[-1, 0]
[0, -1]
[0, 0]

In order to have the complete list of points of Ā(F ) we have to add to the above list the point (0 : 1 : 0),
which corresponds to the identity element OA of the Mordell-Weil group of A. So the finite group
A(F ) consists of 16 points. We may obtain them in a different way by making a list of the multiples
of the reduction P̄ of the point P = (0, 0) of the discussion on the structure of A(Q). So we invoke

for(k=0,17,print(k," ",ellpow(a,[0,0],k)));

The output of the above script is

0 [0]
1 [0, 0]
2 [Mod(1, 13), Mod(0, 13)]
3 [Mod(12, 13), Mod(12, 13)]
4 [Mod(2, 13), Mod(10, 13)]
5 [Mod(10, 13), Mod(1, 13)]
6 [Mod(6, 13), Mod(1, 13)]
7 [Mod(11, 13), Mod(8, 13)]
8 [Mod(5, 13), Mod(6, 13)]
9 [Mod(11, 13), Mod(4, 13)]
10 [Mod(6, 13), Mod(11, 13)]
11 [Mod(10, 13), Mod(11, 13)]
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12 [Mod(2, 13), Mod(2, 13)]
13 [Mod(12, 13), Mod(0, 13)]
14 [Mod(1, 13), Mod(12, 13)]
15 [Mod(0, 13), Mod(12, 13)]
16 [0]
17 [0, 0]

We may see that from k = 16 on the list repeats itself. So we have obtained the same 16 points
(expressed using a different notation). This means that P̄ is a generator of Ā(F ).

3 Cryptographic algorithms

3.1 The Diffie-Hellman key exchange
The Diffie-Hellman key exchange is an algorithm that involves two parties, say Alice and Bob, that
produces a shared secret key, given certain common public data known as the domain parameters.
The shared secret key can then be used to encrypt subsequent communications using a symmetric key
cipher. The domain parameters in essence consist of

• a group G,

• an element g ∈ G that generates a non-trivial subgroup C, and

• the order n = |C| of the cyclic group C.

This is regarded as public information. In this setting the Diffie-Hellman key exchange may be de-
scribed the protocol in which

1. Alice picks secretly α ∈ {1, 2, . . . , n− 1} and computes her public key a = gα,

2. Bob picks secretly β ∈ {1, 2, . . . , n− 1} and computes his public key b = gβ ,

3. Alice copies Bob’s public key b and computes bα,

4. Bob copies Alice’s public key a and computes aβ .

The fact that G is a group implies that bα = aβ . So Alice and Bob have arrived at common secret
information Q := bα = aβ over a public channel. Let us illustrate this algorithm with a simple
example. Consider the multiplicative group E× of the field E of 29 elements and let g be the class of
the polynomial f(X) = 1 +X +X2 modulo the irreducible p(X) = 1 +X +X9 ∈ F [X]. Here F is
a field of 2 elements, as in discussed by the end of Subsection 2.1 (above). For the computations we
shall use GP.

Step 1. Alice picks, say, α = 324 and keeps this information in a secret place. Then she invokes
the commands

alpha = 324
a = gˆalpha
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and gets

Mod(Mod(1, 2)*xˆ6 + Mod(1, 2)*xˆ4 + Mod(1, 2)*xˆ2 + Mod(1, 2)*x +
Mod(1, 2), Mod(1, 2)*xˆ9 + Mod(1, 2)*x + Mod(1, 2))

She publishes the output.
Step 2. Similarly, Bob picks, say, β = 215 and keeps this information in a secret place. Then he

invokes the commands

beta = 215
b = gˆbeta

and gets

Mod(Mod(1, 2)*xˆ8 + Mod(1, 2)*xˆ6 + Mod(1, 2)*xˆ2,
Mod(1, 2)*xˆ9 + Mod(1, 2)*x + Mod(1, 2))

He publishes the output.
Step 3. Alice copies Bob’s public key and invokes

Q = bˆalpha

This yields

Mod(Mod(1, 2)*xˆ6 + Mod(1, 2)*xˆ3 + Mod(1, 2)*x,
Mod(1, 2)*xˆ9 + Mod(1, 2)*x + Mod(1, 2))

Step 4. Similarly, Bob copies Alice’s public key and invokes

Q = aˆbeta

This yields

Mod(Mod(1, 2)*xˆ6 + Mod(1, 2)*xˆ3 + Mod(1, 2)*x,
Mod(1, 2)*xˆ9 + Mod(1, 2)*x + Mod(1, 2))

We may see that the shared secret keys are indeed the same.

Remark 3 The main security concern here is the possible use of the index calculus algorithm to
efficiently solve the associated discrete logarithm problem. (See Subsection 4.1 for a brief discussion
about some heuristic considerations that seem to suggest that the elliptic curve domain parameters
are considerably less vulnerable than the above domain parameters, if the corresponding n’s are
roughly of the same size.)

Alice and Bob also need to agree on which stream cipher to use. Let us suppose that they de-
cided to use the stream cipher based on RC4 provided by OpenSSL. Then they also have to agree
on a rule on how to associate to Q a sequence of ASCII characters, e.g. first invoke the command
Vec(lift(Q)) to convert Q into a binary sequence

[1, 0, 0, 1, 0, 1, 0],
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and then complete the binary sequence with zeros (say, on the left-hand side of it) to get a sequence
of length divisible by 8, which may be converted to ASCII. In this case it turns out to be just one
character:

J

Both parties may save the sequence of characters thus obtained in a file, say, shared.txt. If Alice
wants to send Bob message.txt first she encrypts the message by invoking the command

openssl rc4 -pass file:shared.txt -in message.txt -out message.rc4 -e

and sends Bob only message.rc4. Then Bob receives the message and invokes the command

openssl rc4 -pass file:shared.txt -in message.rc4 -out message.txt -d

and decrypts the message.

3.2 Digital signature algorithm
A digital signature algorithm is an electronic avatar of the traditional written signature. It is used to
prove to a third party that the information was actually signed by the claimed sender. A special feature
of digital signatures (as opposed to written ones) is that they can also be used to verify the integrity of
information. Here we shall describe the digital signature algorithm based on modular arithmetic. First
we choose domain parameters consisting of the cyclic group F×, where F is a finite field of prime
order p, and a generator g of F×. As above, the domain parameters are in essence public knowledge.
Assume that the message sender, say, Alice has produced her secret key α and has also computed
her public key a = gα. (This is just as in the first step of the Diffie-Hellman key exchange protocol
discussed above.) Without loss of generality we may assume that the messagem is an integer. To sign
m Alice chooses another integer k ∈ {1, 2, . . . , p−2} at random. and computes r ∈ {1, 2, . . . , p−1}
and s ∈ {0, 2, . . . , p− 2} such that

r ≡ gk (mod p)

and
m ≡ αr + ks (mod p− 1).

If the latter congruence is not soluble, then we randomly pick another k ∈ {1, 2, . . . , p − 2} and
attempt again to find the desired r and s. After successfully obtaining r and s, Alice sends Bob m
with the pair (r, s) appended to it. Then Bob receives this information and he needs only verify the
relation

gm ≡ arrs (mod p)

to check the authenticity of m.
Let us illustrate this algorithm with a simple example. Put p = 691. (Of course, in real life

applications we would chose a huge prime number p.) It turns out that the class of 2 in F is a
generator of the group F×. Let F× with p = 691 and g = 2 be our domain parameters. Then in GP
we invoke

p = 691;
g = Mod(2, p);
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Then Alice produces randomly her secret key, say α = 155 and enters it:

alpha = 155

Then computes her public key by invoking

a = gˆalpha;

That produces the output

Mod(246, 691)

To sign a message, say m = 10, she does as follows. First she generates a another random integer k,
subject only to the condition gcd(k, p− 1) = 1, say k = 649, and then invokes the commands

m = 10
r = lift(gˆk)
s = lift( (m - alpha*r)*Mod(k, p - 1)ˆ-1 )

This yields (r, s) = (566, 120). Now she may send Bob the message with the signature [r, s]
attached to it. Bob receives the message and its attachment and then decides if it is OK by invoking
the command

if(gˆm == aˆr * rˆs, print("OK"), print("NOT OK"));

3.3 The elliptic curve digital signature algorithm
Now we shall describe the elliptic curve version of the digital signature algorithm. For this purpose
we need to define the elliptic curve domain parameters. These consist essentially of an elliptic curve
Ā defined over a finite field F , a point g ∈ Ā(F ) of order n, where n is a prime number. As above,
these domain parameters are basically public knowledge. The secret key of the sender, say, Alice is a
random choice of α ∈ {1, 2, . . . n − 1}, and her public key is the point a = [α]g. (This is analogous
to the first step of the Diffie-Hellman key exchange protocol discussed above.) Again, without loss of
generality we may assume that the message m is an integer. In order to sign m Alice needs to chose
another integer k ∈ {1, 2, . . . , p− 2} and then compute

(x1, y1) = [k]g (6)

and
r = x1 (mod n).

If it turns out that if r = 0, then she picks another k at random and goes to Line 6, else

s = k−1(m+ αr) (mod n)

If s = 0, then she picks another k at random and goes to Line 6. Once she has successfully obtained
r and s, she sends m with (r, s) appended to Bob. To verify the signature he needs only to compute

u1 = ms−1 (mod n)
u2 = rs−1 (mod n)
(x1, y1) = [u1]g + [u2]a

257



The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

and the signature is authentic if r = x1 (mod n), and not authentic otherwise.
A measure of the security provided by the elliptic curve domain parameters is given in essence

by the size of n. As n is the order of the subgroup of Ā(F ) generated by g, we may compute it
by first computing c := |Ā(F )| and then computing gd for certain d|c. But if |F | is large, it is not
feasible to compute c by merely counting the points (x, y) ∈ F × F that satisfy the affine version of
its Weierstrass equation (and the point O). Fortunately there are some efficient algorithms that may
be used to explicitly compute c when |F | is rather large quite quickly. These algorithms are based
on some advanced results coming from arithmetic algebraic geometry. (See the Appendix for further
information.) One of these efficient algorithms is implemented in the PARI/GP function ellap().
Let us illustrate how this function may be used to compute n with a simple example. Suppose A is
the elliptic curve with Weierstrass equation [0, 0, 1,−1, 0]. This is elliptic curve 37a1 we discussed
before. Let us put p = 691, but we hope that the interested reader will pick much larger primes. By
basic properties of the trace of Frobenius (see the Appendix) it turns out that c may be computed via

A = ellinit([0, 0, 1, -1, 0]);
p = 691;
c = p + 1 - ellap(A, p);

Now let us consider the reduction Ā of A modulo p = 691

Reduced_A = ellinit([0, 0, 1, -1, 0]*Mod(1,p));

The point g = (0, 0) generates A(Q). So from a heuristic point of view it is natural to consider ḡ in
our first attempt. We may compute the order of ḡ with the help of

m=0;
g = [0, 0];
for(j=1, c, P=ellpow(Reduced_A, g, j); if(P == [0], m = m+1));
n = c/m

As the reader may see, n = 178 and the point ḡ = (0̄, 0̄) ∈ Ā(F ) has order 178 = 2 · 89. Replacing ḡ
by [2]ḡ

g = elladd(Reduced_A, [0, 0], [0, 0])

we get a point of Ā(F ) of prime order n = 89. Let us put

n = n/2

Let us define as our domain parameters the elliptic curve Ā, the point g = (1̄, 0̄), and the integer n.
Now we will illustrate the elliptic curve signature algorithm with a simple example based on the

above domain parameters. Suppose Alice generates a secret key, say, α = 55. Then she computes her
public key

Public_Key = ellpow(Reduced_A, g, alpha)

Now suppose that her message is m = 10. The signature of m (with respect to her secret key) may be
produced by choosing another random integer k ∈ {1, 2, . . . , n− 1}, say k = 26, and then invoking
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P = ellpow(Reduced_A, g, k);
r = lift(Mod(lift(P[1]), n));
s = lift( (m + alpha*r)*Mod(k, n)ˆ-1 );

It turns out that (r, s) = (69, 6), so we may proceed to the next step. Now Bob receives the message
m and the signature (r, s) attached to it. He verifies the signature in two steps as follows. The first
step is

u1 = lift(m*Mod(s, n)ˆ-1);
u2 = lift(r*Mod(s, n)ˆ-1);
Q1 = ellpow(Reduced_A, g, u1);
Q2 = ellpow(Reduced_A, Public_Key, u2);
Q = elladd(Reduced_A, Q1, Q2);

For our special case it turns out that Q is the point

[Mod(69, 691), Mod(495, 691)]

The second step is just

if(Mod(r, n) == Mod(lift(Q[1]), n), print("OK"), print("NOT OK"));

The reader may invoke the above sequence of commands and see that the output is indeed OK.

4 Concluding remarks

4.1 On the index calculus attack applied to elliptic curves
The index calculus algorithm is one of most efficient algorithms to compute the discrete logarithms.
This is a probabilistic algorithm which requires a certain relatively small set of prime numbers known
as a factor base as input. To solve the discrete logarithm problem for the groupE×, whereE is a finite
field, it is possible to get a suitably small factor base. But if A is an elliptic curve defined over Q and
Ā is its reduction modulo p, the quadratic nature of the height function on A(Q) (briefly discussed by
the end of Subsection 2.2.) implies in particular that there are not many points P̄ ∈ Ā(F ) that come
from points P ∈ A(Q) having small height ĥ(P ). This justifies from a heuristic point of view that
there is not much hope about the possibility of applying successfully the index calculus algorithm to
solve discrete logarithms for cyclic subgroups C ⊂ Ā(F ) of prime order, provided Ā is a “general
type” elliptic curve defined over a finite field F . Further details may be found in Victor Miller’s
paper [3].

4.2 On the generation of elliptic curve domain parameters
In order to obtain commercial grade domain parameters it is required that the order c of the point g ∈
Ā(F ) is a prime number of 163 bits or more, with the field of definition F for A of roughly the same
size. It is also required that A is not vulnerable to certain well-known attacks (i.e. the Weil-descent,
the MOV, and the additive group attacks). To get an elliptic curve that meets all these requirements
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one has to test a huge number of elliptic curves generated at randomly. So one needs a fast algorithm
to compute the trace of Frobenius at p. The Schoof-Elkies-Atkin algorithm is an efficient algorithm
for that purpose. In fact, this algorithm is implemented in ellap() of PARI/GP [4]. There are
other algorithms to compute the trace of Frobenius for elliptic curves over some specific types of
fields, such as Satoh’s algorithm for elliptic curves over finite fields of characteristic 2, the so-called
binary case. The interested reader may look at the implementation by Kim-Ee Yeoh of Satoh’s point
counting in

http://pages.cs.wisc.edu/˜yeoh/nt/satoh-fgh.gp

The above is an implementation that uses the GP scripting language.

5 Appendix

5.1 Finite fields
Suppose E is a finite field. So E is of positive characteristic p (for some prime p) and may thus be
regarded as a finite dimensional vector space over a finite field F of p elements. If d is its dimension
then the cardinality |E| of E is |E| = |F d| = pd. Given any prime number p and any positive integer
d there is a field F such that |E| = pd. Indeed, if F al is a fixed algebraic closure of a finite field F
of p elements, we may cut out a field E by taking the fixed field of the d-fold composition ϕd of the
Frobenius automorphism

F al −→ F al

x 7−→ xp
(7)

In particular, the elements of E are precisely the roots of the polynomial f(X) = Xpd −X of degree
pd; since the derivative f ′(X) = −1 we have f(X) is separable and thus |E| = pd.

Proposition 4 With the above notation, the map F 7→ d defines an isomorphism from the lattice of
finite subfields of F al and the set of positive integers, the latter equipped with divisibility as order
relation.

Proof. We have just shown that F 7→ d defines a surjective map onto the set of positive integers. Our
next step is to show that it is injective. Suppose K is a subfield of F al such that |E| = pd. For each x
in the multiplicative group K× = K − {0} we have xpd−1 = 1. So xpd = x for all x ∈ K. Therefore
every element x ∈ K is a root of the above polynomial f(X) = Xpd −X and we may conclude that
K = E. The rest follow from Galois theory and the fact that φ generates the Galois group of E over
the field F . The details are left as an easy exercise to the reader.

5.2 Elliptic curves
Let K be either a field of characteristic 0 or a field of positive characteristic p such that the Frobenius
map x 7→ xp defines an automorphism of K. An elliptic curve A over K is a complete non-singular
projective curve A/K of genus 1 with a specified point in A(K). It is customary to denote the
specified point OA. Now let n be a positive integer. The Riemann-Roch theorem implies that the
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K-vector space of functions x ∈ K(A) with at worst a pole of order n at O has dimension n. In
particular, there is a function x ∈ K(A) with a double pole at OA and no other poles. Similarly, it is
easy to see that there is y ∈ K(A) with a triple pole at OA and no other poles. Moreover, there must
be an algebraic relation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (8)

where a1, a2,a3,a4, and a6 are suitable elements of K. It is a classical result that

P 7→
{

(0 : 1 : 0), if P = OA

(x(P ) : y(P ) : 1), if P 6= OA

defines an embedding over K from A into the projective plane P2. The image of the embedding is
the locus defined by the homogeneous Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

The discriminant ∆ ∈ K of the Weierstrass equation is defined by the formulæ

∆ = 1
1728

(c34 − c26)
c4 = b22 − 24b4
c6 = −b32 + 36b2b4 − 216b6
b2 = a21 + 4a2
b4 = a1a3 + 2a4
b6 = a23 + 4a6

and it may be shown that ∆ 6= 0. Conversely, if we have a Weierstrass equation with coefficients
a1, a2,a3,a4, and a6 in K such that ∆ 6= 0, the curve defined by it in the projective plane P2 is an
elliptic curve A defined over K. We usually denote a Weierstrass equation by [a0, a1, a2, a3, a4, a6]
and denote W = W (a1, a2, a3, a4, a6) the curve defined by it in P2. Given Weierstrass equations
W (a1, a2, a3, a4, a6) and W ′ = W (a′1, a

′
2, a
′
3, a
′
4, a
′
6) of A there exist u ∈ k× and r, s, t ∈ k such that

ua′1 = a1 + 2s,
u2a′2 = a2 − sa1 + 3r − s2,
u3a′3 = a3 − ra1 + 2t,
u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st,
u6a′6 = a6 + ra4 + 3r + r2a2 + r3 − ta3 − t2 − rta1.

(9)

Given an elliptic curve A defined over Q described by a Weierstrass equation [a0, a1, a2, a3, a4, a6] we
may use the changes of coordinates defined by Equations 9 if necessary to have all its coefficients in
Z. Then, given a prime number p we may define the reduction of W modulo p as the projective curve
W defined by the Weierstrass equation [ā0, ā1, ā2, ā3, ā4, ā6]. Note that W becomes a singular curve
(and thus not an elliptic curve) if and only if p|∆. So in order to increase the number of primes p such
that the reduced curve W is an elliptic curve let us make further changes of coordinates 9 if necessary
to have the absolute value |∆| of the discriminant ∆ of the Weierstrass equation as small as possible.
We call such discriminant the minimal discriminant of A and denote it ∆A. The resulting equation
is known as a minimal Weierstrass equation for A/Q. We say that A has bad reduction at a prime p
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if the discriminant of a minimal Weierstrass equation of A is divisible by p. So we may define the
reduction map A −→ Ā by P 7→ P̄ , where P̄ is obtained by reducing (suitably chosen) projective
coordinates of P . It is not difficult to see that this is a group homomorphism.

As usual, if K ′ is a field extension of K, we let A(K ′) be the locus of points P on A defined over
K ′. Using again the Riemann-Roch theorem it may be shown that for each algebraic field extension
K ′/K the canonical map

E(K ′) −→ Pic0(A/K ′)
P 7−→ P −O

is actually a bijection. Here if Pic0(A/Kal) denotes the free group generated by the set A(Kal) such
that their degree is 0 modulo the divisors (f) of functions f ∈ Kal(A), then Pic0(A/K ′) denotes
the classes of Pic0(A/Kal) defined over K ′. This gives the set A(K ′) a group structure known as
the Mordell-Weil group of A/K ′. By using still once more the Riemann-Roch theorem we may find
explicit expressions for the coordinates of the group law.

Suppose A is an elliptic curve over Q. Denote Ā its reduction modulo a prime p. The Frobenius
endomorphism φ ∈ End(A) defined by (x, y) 7→ (xp, yp) induces a semi-simple operator on the Tate
module T`A, for a prime ` 6= p, and this operator has characteristic polynomial

ξ(X) = X2 − aA(p)X + p,

where aA(p) = p + 1 − |Ā(F )|, and F denotes the integers modulo p. Here, if A[`k] denotes the
`k-torsion of A(Qal) then taking the inverse limit over k defines

T`A := lim
←−

A[`k]

The integer aA(p) is known as the trace of Frobenius. As mentioned in the above section, the
Schoof-Elkies-Atkin algorithm is an efficient algorithm to compute aA(p), which is implemented
in the PARI/GP function ellap().

5.3 Installing PARI/GP
The computer algebra system PARI/GP [4] is free software that runs on most common operating sys-
tems. It is designed for fast computations in number theory, but also contains many other useful func-
tions to compute, such as matrices, polynomials, power series, and also transcendental functions. It is
distributed under the GNU General Public License and is available in the most popular GNU/Linux
distributions. To install Pari/GP, together with the J. E. Cremona elliptic curve data package on a
computer running Fedora it suffices to invoke the command

yum install pari-gp pari-elldata

Alternatively, the reader may consider downloading the PARI/GP source code and compiling it. This
may be done with the help of an ANSI C or a C++ compiler such as the GNU Compiler Collection.
The PARI/GP kernel may take advantage of optimizations this compiler provides. It is useful to build
PARI with the GNU MP library, which is a library for arbitrary precision arithmetic and the GNU
readline library, which provides line editing under GP.
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